·已知函数f(x)= f
注意到等式中f'(pi/4)是常数,所以
f'(x)=f'(pi/4)(-sinx)+cosx
--->f'(pi/4)=f'(pi/4)[-sin(pi/4)]+cos(pi/4)]
--->f'(pi/4)=f'(pi/4)(-√2/2)+√2/2
--->f'(pi/4)(1+√2/2)=√2/2
--->f'(pi/4)=(√2/2)/(1+√2/2)=1/(√2+1)=√2-1.
你可能想看:
注意到等式中f'(pi/4)是常数,所以
f'(x)=f'(pi/4)(-sinx)+cosx
--->f'(pi/4)=f'(pi/4)[-sin(pi/4)]+cos(pi/4)]
--->f'(pi/4)=f'(pi/4)(-√2/2)+√2/2
--->f'(pi/4)(1+√2/2)=√2/2
--->f'(pi/4)=(√2/2)/(1+√2/2)=1/(√2+1)=√2-1.