荧光的应用领域有哪些?
荧光灯常见的荧光灯就是一个例子。灯管内部被抽成真空再注入少量的水银。灯管电极的放电使水银发出紫外波段的光。这些紫外光是不可见的,并且对人体有害。所以灯管内壁覆盖了一层称作磷(荧)光体的物质,它可以吸收那些紫外光并发出可见光。可以发出白色光的发光二极管(LED)也是基于类似的原理。
由半导体发出的光是蓝色的,这些蓝光可以激发附着在反射极上的磷(荧)光体,使它们发出橙色的荧光,两种颜色的光混合起来就近似地呈现出白光。荧光笔荧光笔有荧光剂,它遇到紫外线(太阳光、日光灯、水银灯比较多)时会产生荧光笔荧光效应,发出白光,从而使颜色看起来有刺眼的荧光感觉。
荧光笔的荧光跟我们手表、荧光棒的荧光原理不相同,荧光棒是内部发生放射性反应,产生的射线激发外周的荧光粉发光,因此它们在夜里没有任何紫外线的情况下都能发光。而荧光笔则一定有紫外线情况下才会发荧光,这一点你只要把荧光笔的笔迹靠近捕蚊灯、验钞机就可以看得非常清楚。
生化和医药荧光在生化和医药领域有着广泛的应用。人们可以通过化学反应把具有荧光性的化学基团粘到生物大分子上,然后通过观察示踪基团发出的荧光来灵敏地探测这些生物大分子。
实例:
用于对DNA进行自动测序的链末端终止法:在原初的方法中,需要对DNA的引物端进行荧光标记,以便在测序凝胶板上确定DNA色带的位置。
在改进的方法中,对作为链终止剂的4种双脱氧核苷酸(ddTBP)分别进行荧光标记,电泳结束后不同长度的DNA分子彼此分开,经紫外线照射,4种被标记的双脱氧核苷酸发出不同波长的荧光。通过分析荧光的光谱便可以分辨出DNA的序列。DNA探测:溴化乙啶是一种荧光染料,当它在溶液中自由改变构型时,只能发出很弱的荧光;当它嵌入核酸双链的碱基对之间与DNA分子结合后,便可以发出很强的荧光。
因此在凝胶电泳中,一般加入溴化乙啶对DNA染色。DNA微阵列(生物芯片):需要对基因组探针进行荧光标记,最后通过荧光信号确定靶标序列。免疫学中的免疫荧光检查法:对抗体进行荧光标记,从而可以根据荧光的分布和形态确定抗原的部位和性质。流式细胞仪(又称荧光激活细胞分选器,FACS):对样本细胞进行荧光标记,再用激光束激发使之产生特定的荧光,然后用光学系统检测并将信号传输到计算机进行分析,从而得到细胞相应的各种特性。
水母的荧光蛋白荧光技术还被应用于探测和分析DNA及蛋白质的分子结构,尤其是比较复杂的生物大分子。水母发光蛋白最早是从海洋生物水母(Aequoreavictoria)中分离出来的。当它与Ca2+离子共存时,可以发出绿色的荧光。这一性质已经被应用于实时观察细胞内Ca2+离子的流动。
水母发光蛋白的发现推动了人们进一步研究海洋水母并发现了绿色荧光蛋白(GreenFluorescentProtein,GFP)。绿色荧光蛋白的多肽链中含有特殊的生色团结构,无需外加辅助因子或进行任何特殊处理,便可以在紫外线的照射下发出稳定的绿色荧光,作为生物分子或基因探针具有很大的优越性,所以绿色荧光蛋白及相关蛋白已经成为生物化学和细胞生物学研究的重要工具。
萤光显微成像技术:全内反射荧光显微镜。
很多生物分子具有内禀的荧光性,不需要外加其他化学基团就可以发出荧光。有时侯这种内禀的荧光性会随着环境的改变而改变,从而可以利用这种对环境变化敏感的荧光性来探测分子的分布和性质。例如胆红素与血清白蛋白的一个特殊位点结合时,可以发出很强的荧光。
又如当血红细胞中缺少铁或者含有铅时,会产生出锌原卟啉而不是正常的血红素(血红蛋白);锌原卟啉具有很强的荧光性,可以用来帮助检测病因。宝石、矿物宝石,矿物,纤维以及其他一些可以作为犯罪取证的材料可以在紫外线或者X射线的照射下发出不同性质的荧光。
红宝石、翡翠、钻石可以在短波长的紫外线下发出红色的荧光,绿宝石、黄晶(黄玉)、珍珠也可以在紫外线下发出荧光。钻石还可以在X射线下发出磷光。仪器测荧光一定要有仪器。通常用来检测物质所含荧光量的仪器我们称之为荧光分光光度计。
荧光分析仪的基本结构:激发光源、激发单色器、样品室、发射单色器及检测系统。