通径分析的基本概念
2.1 通径模型(pat来自h model):
通径模型是由一组线性方程组成的,反映自变量、中间变量、潜变量和应变量之间相互关系的模型,是以多元360问答线性回归方程为基础的模型。
2.2 通径图(path graph):
通径图(如啊视图1)可以直观的表现水各个变量之间的相互关系。通径图中的单箭头线称为直接通径(如A到D),简称通径(path),表示因果关系,方向由原因指向结果。双箭头线称为相关线(correlation line),表示变量间互为因果,是平行关系(如A与B)。
?xml:namespace prefix = v ns = urn:schemas-microsoft-com:编解期很圆单领vml /
A B C
D
图1 通径图
其中е为误差项。
2.3 外生变量和内生变量:
通径分析中只受到模型之外的其他因素影响的变量称为外生变量,如图1中的A、B、C、е,通径图中没有箭岁雨量凯话征序天培失见头指向它们。外生变量之间如果有相关关系,则用双箭头线表示。
通径分析中受到模型中某些变量影响的变量称为内处评讨生变量,如图1中的D,通径图中有帮朝内的箭头指向它们。
2.4 通径系数(path coefficient要):
通径系数是是用来表示相关变量因果关系的统计量,是标准化的偏回归系数 ,也称作通径权重。通径系数一般用最小二乘法法(OL外互植改跑问为活部地S)或极大似然估计法(MLE) 来估计。
?xml:namespace prefix = st1 ns = urn:schemas-microsof格急右t-com:office错企斤帝析封准经圆跳没:smarttags /2首.4.1 通径系数的数学表达式
如果我们估计的线性回归方程为:
= + + (1)
或
= 距氧位方歌第+ + +e(e为残差)(2)
由于 和 带有量纲,我们不距皮念阿段们能通过 、 来比较 对 的影响大小。如果要比较 和 对 的影响,需要消除量纲的影响,需要将 、 及e标准化。
由 = + + +e可得:
= + + (3)
公式(2)与公式代罪纪(3)相减得:
- = - )+ ( - )+e (4)
公式(4)可变换为下式:
= 味知棉源势儿· + · + ·e (5)
公式(5)中 、 、 、 分别表示 、 及e的标准差。 和 分别为自变量 、 的标准化偏回归系数。 为除了自变量以外的其他因素对应变量 的影客断工响大小。如果我们以 、 、和 分别表示 、 和e到 的通径系数,那么:
当我们估计的线性回归方程有多个自变量,且自变量间两两相关时,各自变量及残差到应变量的通径系数的数学表达式同上。
2.4.2 通径系数的性质:
(1)通径系数具有偏回归系数的性质。它是变量标准化后的偏回归系数,能够表示变量间的因果关系,故仍具有偏回归系数的性质。
(2)通径系数具有相关系数的性质。它是一个不带单位的相对数,因而又具有相关系数的性质,是具有方向性的相关系数,能表示原因与结果(自变量与依变量)之间的关系,它是介于回归系数和相关系数之间的一种统计量,可用于各种性状间的相关分析。
(3)通径系数是一个不带单位的相对数。可以用它来估计自变量对应变量直接影响效应的大小,比较其相对重要性。
(4)利用通径系数分析,可以帮助我们建立“最优”多元回归方程。
2.5 决定系数(Determination coefficient)
通径系数的平方称为决定系数,表示自变量或误差能够解释应变量总变异的程度。
3 通径分析的显著性检验
通径分析的显著性检验包括以下四项:
(1) 回归方程显著性检验:采用F检验法;
(2) 通径系数显著性检验:采用F检验法或T检验法;
(3) 通径系数差异显著性检验:采用F检验法或T检验法;
(4) 两次通径分析相应通径系数显著性检验:采用F检验法或t检验法。
一般情况下,第(3)种检验和第(4)种检验在一般的多元线性回归分析中无法实现,因为不同偏回归系数带有不同量纲,但是在通径分析中,这两种检验可以实现。